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A method for the numerical solution of ordinary differential equations is analyzed that is 
explicit and yet can conserve the quadratic quantities conserved by the equations. The method 
can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the 
occurrence of blowup phenomena. Numerical examples concerning the Kortewegde Vries 
equation and the nonlinear Schrodinger equation are given. 

1. INTRODUCTION 

In [27] one of the present authors suggested a finite-difference scheme for the 
numerical study of the Korteweg-de Vries equation that is explicit and conserves 
exactly the “energy” of the computed solution. The main novelty of the scheme lay in 
the device employed for the integration in time, which was reminiscent of the usual 
leapfrog technique and yet did not suffer from the notorious blowup associated in 
some cases with leapfrog schemes 19, 10,241. Some indications regarding the 
extension of the suggested device to more general equations were also given in [27] 
and have been recently implemented by Mitchell and Morris [22] in the case of a 
nonlinear Schrodinger equation. 

The present article develops the material in [27] in three different directions. First 
the suggested method for the integration in time of partial differential equations is 
presented in its full generality and analyzed. The method will then be applied to the 
Korteweg-de Vries equation as in [27] but with more thorough testing. Finally we 
shall consider the nonlinear Schrodinger equation studied in [22]. Our implemen- 
tation is different from that used by Mitchell and Morris and a comparison will be 
drawn. The numerical experiments indicate that the schemes based on the suggested 
idea perform better than conventional leapfrog procedures. 

273 
0021-9991183 $3.00 

Copyright 0 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



274 SANZ-SERNA AND MANORANJAN 

2. THE CIRCULARLY EXACT LEAPFROG METHOD 

In this section we shall be concerned with the numerical solution of the system of 
ordinary differential equations 

& 
dt = f(Y 19 (2.1) 

where y is a vector with d components. 
In the applications we have in mind, (2.1) will arise from the discretization in 

space of a system of partial differential equations, but at this stage no assumption on 
the properties or structure of f will be made. 

The system (2.1) is discretized by means of the two-step method 

Y nt1 -Y n--l = 2r,f” (2.2a) 

Tn = (y” - yn-‘)Tfn/(fnTf”) (2.2b) 

which can be derived [21] by fitting a circle to the past information: y”, yn- ‘, f”. 
Here f” = f(y”) and y” is meant to approximate y(t,), where the values f,, are 
computed recursively according to 

t IIf1 -t “-, = h,. (2.2c) 

Formulas (2.2a, b) were first suggested by Lambert and McLeod [ 181 for the case 
d = 2 and extended to the general case by Laurie [20]. These authors did not use 
formula (2.2c), as in the particular applications they considered thay were concerned 
with computing values of y and not with finding the correspondence of those values 
with t. The method enjoys the following property referred to as circular exactness: 
whenever the trajectory described in the d-dimensional space by the solution of (2.1) 
is a circle, all the computed points will lie on that circle provided that y, , y , do [ 2 I]. 
Since (2.2a) is clearly reminiscent of the usual leapfrog or midpoint rule, we shall use 
the term circularly exact leapfrog method (CELF) to refer to formulas (2.2). Note 
that substitution of (2.2b) in (2.2a) shows that we are dealing with a rational method, 
i.e., a method which demands that products and quotients of the past information be 
formed. However, it is not related to the rational methods described in the literature 
[ 17, 191. Rational methods are far more difficult to analyze than linear methods. 

Throughout this paper, Euler’s method 

y’ = y” + kfO, (2.3a) 

t, = to + k, (2.3b) 

will be employed to initialize the CELF method. Of course alternative starting 
procedures may be considered. 

It should be emphasized that the parameter k in (2.3) provides only the initial step- 
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length while subsequent step-lengths are obtained from (2.2b). Thus the CELF 
method is a variable step method, in which the initial step-size is the only control 
upon the sequence of step-sizes. 

The main properties of the method will now be studied. 

(i) Order of Accuracy 

Taylor expansion of (2.2b) shows that if y’-‘, yn are exact, i.e., y”-’ = y(t,-,), 
yR = y(t,), the next time level is 

t n+l=t,+(t,--t,-l)-((t,-tt,-,) 
2 y"(t,)' Y'Q"> 

y,(t 
n 

)T y,(t 
n 

) + o((fn - tn-l)3) (2.4) 

and then expansion of y(t,+J and (2.2a) lead to 

Y “+1-Y(t,+1)=O((t”--t,-1)3), 

so that we are dealing with a method of second order of consistency [ 16, p. 28). 
Numerical evidence supports the claim the method possesses second order of 
convergence, i.e., Ilu” - ~@,)ll = W2h b u no theoretical proof of this fact is t 
available. 

(ii) Equidistributing Property 

It is easily shown that ]]y”+’ - y”]] = ]]y” -yyn-‘]]; i.e., the method equidistributes 
the dependent variable [35], as distinct from the equidistribution of the independent 
variable t,+i -t, = t, - tn-i, associated with standard ODE solvers (in fixed-step 
implementations), cf. [ 2 11. 

In fact, for the scalar equation dy/dt = j(y), formulas (2.2) can be rewritten as 

Y n+l - y” = y” - y”-’ = const, (2.6) 

t ntl -fn-l= 2(Y” - Y”-‘MY”), 

which is precisely the result of applying the usual midpoint rule [ 161 to the equation 
df/dy = l/f(y), in which the roles of the dependent and independent variables have 
been interchanged. This remark also proves the O(k*) convergence of the method in 
the scalar case. 

It might be useful to point out that in [27] two schemes were suggested; one is the 
CELF method and the other (called in [27] fixed-step conservative) is given by 
(2.2a, b) and the formula t,, , = t, + k. It is easily seen that application of the lixed- 
step conservative scheme to the scalar equation leads to y”” - y” = constant, 
t ntl- t, = constant and therefore convergence cannot take place. 

(iii) Stability 

Recall that the stability of linear methods [ 161 is usually investigated by applying 
them to the model equation y’ = Ay. This analysis is relevant because consideration of 
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normal modes extends it to any linear system. For the CELF method it is possible to 
solve the difference equations (2.2) in closed form when (2.1) takes the model form. 
However, for rational methods the conclusions cannot be extended to more general 
systems, due to the lack of a superposition principle for the solution. This 
consideration also precludes the use of a normal mode analysis in the applications of 
the method to PDEs. 

(iv) Rounding Errors 

Our attention is now directed to a discussion on rounding errors, as these will play 
an important role later in the paper. 

We consider first the problem dy/dt = 1, y(0) = 0. In the absence of round-off 
error, formulas (2.2), (2.3) yield y” = nk with no error. Let us assume that an error is 
perpetrated leading to y”’ = y’ + E. If no further round-off errors are present, the 
values of y are y^” = y” + nc, so that for large n the difference $” - y” can be 
significant. However, the computed values of t are given by fn = t, + nc if n is even, 
i, = t, + nc - E if n is odd, and therefore the propagated error y^” - i,, is 0 or E, 
respectively. Thus the presence of round-off has altered the sequence of step-sizes but 
not impaired greatly the accuracy of the method. Similar analyses can be conducted 
to study the effects of round-off errors in the computation of r, or t,. The conclusion 
above is not altered. 

In order to ascertain whether the same results hold for more general equations, the 
problem y’ = y, y(0) = 1 was solved in a short word-length pocket calculator by the 
CELF method, with a random noise added to the right-hand side of each of the 
equations (2.2). The noise was uniformly distributed in the interval [-/3/2, p/2]. Some 
of the results are displayed in Table I, where it is shown, in agreement with the 
previous discussion, that severe rounding errors result in an alteration of the step- 
length but propagate in a rather stable manner. Note also the O(k*) behaviour of the 
error in the last row. 

(v) Conservation of the L* Norm 

We now make the assumption that the identity 

zTf(z) = 0 

TABLE I 

(2.7) 

k = 0.0250 k = 0.0125 

B t 40 Error x lo6 Error x IO6 

10-1 1.8844 2612 1.99165 7231 
1om4 1.9884 139 1.9930 703 
1o-5 1.9988 -126 1.9993 35 
0 2.0000 -156 2.0000 -39 
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for all d-dimensional vectors z. Then the “energy” yTy = C yt = 11 y 11’ is a constant 
of motion for the solutions of (2.1). In a partial differential equation setting, this 
implies the conservation of the discrete counterpart of the integral of the square of the 
solution. The importance of the conservation of energy, both from the numerical and 
the physical point of view cannot be overemphasized (see the discussion in [24, 271). 
It was shown in [27] that the CELF method is energy conserving whenever (2.7) 
holds. Therefore is not subject to the appearence of the blowup phenomena due to 
nonlinear interactions which is the main drawback in the application of leapfrog 
schemes to the study of waves. Newell and his co-workers [5,26] have analyzed the 
mechanism leading to blowups. 

It can be proved that there is no explicit, energy conserving Runge-Kutta or linear 
multistep method. There exist of course implicit, energy-conserving standard methods, 
but their conservation properties are lost if the implicit equations are not solved 
“exactly” (i.e., the iteration must be continued until the error is within the level of 
round-off). On the other hand, conservation laws of any kind can always be enforced 
in an a posteriori manner (see Navon [25, 39, 401). For instance, the scheme 

*PI+1 _ 
Y -Y *--l + 2kf”, 

Y n+* =(IlY”Il/lli”+‘II>~“+‘~ 
P-8) 

which we call normalized leapfrog, has obviously the energy ]] y ]] as a conserved 
quantity. Note, however, that (2.8) can only approximate systems which satisfy (2.7), 
while the CELF method can be applied to any system of ordinary differential 
equations. A comparison between the normalized leapfrog and CELF methods will be 
given in Section 4. An alternative way of preventing the blowup phenomenon is the 
use of filters [41]. 

Before closing this paragraph, some comments on the implementation of the 
method should be made. When identity (2.7) holds, it is possible to rewrite formula 
(2.2b) in the form 

5, = -y*-"f"/(f"'f") (2.9) 

which is marginally more economical. An error of E in the evaluation off” alters the 
numerator of (2.9) by an amount (Y~-‘)~E and that of (2.2b) by an amount 
(y” - ~“-‘)~a Since in a typical computation these quantities are O(]]E]]) and 
O(k ]]s]]), respectively, it seems that formula (2.2b) should be preferred. Note that in 
a system arising from partial differential equations the evaluation of f can require a 
very large number of arithmetical operations. 

(vi) Other Conserved Quantities 
If the identity 

z%f(z) = 0, (2.10) 

rather than (2.7), holds, then the conserved quantity becomes yTMy. Here we assume 
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that M is a constant, symmetric, positive-definite matrix. Accordingly, in this case 
(2.2b) would be replaced by 

r, = [(y” - y”-i)TMf”]/(f”‘Mf”), (2.11) 

in order to obtain the conservation of (Y”)~M~“. In a finite-element setting [ 23 ], f 
would take the form M-‘g, with M the mass matrix, and (2.11) would become 

r, = ICY” - Y”-‘)=g”lI[gnT(~~‘gn)l (2.12) 

and therefore the CELF method requires only the evaluation of two inner products 
per step in addition to the computational effort of the usual leapfrog scheme. 

3. THE KORTEWEG-DE VRIES EQUATION 

There are many available methods for the numerical solution of the Korteweg-de 
Vries equation 

u, t uu, + EU,,, = 0, & > 0. (3.1) 

References include Zabusky and Kruskal [37], Vliegenthart [33], Greig and Morris 
[ 121, Gazdag [ 111, Canosa and Gazdag [6], Abe and Inoue [ 11, Alexander and 
Morris [3], Wahlbin [34], Sanz-Serna and Christie [29], Schoombie [30,31], Kuo 
and Sanz-Serna [14], Christie et al. [7], Kuo and Wu [ 151, Winther [36], and 
Arnold and Winther [4]. 

We are concerned with the initial-value problem given by (3.1) together with the 
initial condition 

u(x, 0) = F(x). (3.2) 

It is assumed that the interest is centered in solutions that, for the range of time 
under consideration are negligible outside an interval 0 < x < L, although the 
situation is not greatly altered when periodic solutions are considered. The equation 
is discretized in space by introducing a grid xi = j/z, j = 0, l,..., J, J= L/h, and 
approximating u(xj, t) by Uj(t), where the nodal values vi(t) satisfy 

and 

Uo(t) = U,(t) = u,- l(t) = UJt) = 0, (3.3) 

('/'t) U.(t) + (1/6h)(Uj+ l(t) + Uj(t> + Uj- I(t)>(uj+ I(t) - Uj- l(t)) 
+ (E/2h3)(uj+2(t) - 2Uj+ I(t) t 2Uj- l(t) - Uj-2(t)) = 0, (3.4) 

j = 2, 3,..., J- 2. Thus a system of ordinary differential equations is obtained for the 
vector y = [U, ,..., U,-,I’. It is easily verified that for this system (2.7) holds, leading 
to. conservation of the L2 norm. 
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When (3.4) is discretized in time by the usual leapfrog technique the resulting 
scheme is identical to that suggested by Zabusky and Kruskal [37]. This scheme is 
O(k* + h’), it accurately reproduces the wave profile (Abe and Inoue [l]), and, 
unlike higher-order methods (cf. [3 l]), does not introduce spurious oscillations. 
Unfortunately it is subject to blowup phenomena [ 1, 271. 

In 1271 the CELF method was employed as an alternative in the discretization of 
(3.4). The resulting scheme is not subject to the occurrence of blowup, due to the 
exact conservation of energy. Numerical results reported in [27] show that this 
“stabilization” is obtained without sacrificing accuracy and Figs. 1 and 2 indicate 
that the CELF method faithfully reproduces the wave profiles. In both figures 
h = 0.01, k = 0.0008, and E = 0.000484; the method is run for 3000 steps. Figure 1 
describes the evolution of a single soliton with amplitude 0.9, initially located at 
x = 0.5. In this experiment L = 2. The interaction of two solitons with amplitudes 2.1 
and 0.3 and initial positions 0.5 and 1.5, respectively, is pictured in Fig. 2, which has 
L = 4. 

The evolution of the time-step for the reported interaction of solitons is monitored 
in Table II. The step-size is found to remain nearly constant troughout the 
integration. Note that in the propagation of a wave, equidistribution of y would result 
in an approximate equidistribution of t (Section 2(ii)). In fact we found that the 
average time step t,/n depends on the initial step k and on the grid spacing h, but not 
on the particular solution under consideration. For a fixed value of h the behaviour of 
t,/n is as follows. There is a critical value k,(h) such that when k < k,(h) the steps 
are all nearly equal to the initial value k. If, however, k > k,(h) the step-size is 
reduced, so that the average t,/n approaches k,(h) as n increases. An example of this 

FIGURE 1 
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FIGURE 2 

is provided in Table III, which gives the observed average step in 0 < t < 1 when 
h = 0.01. Furthermore we have found that the critical value k,(h) is precisely the 
maximum time-step that can be allowed if the usual leapfrog scheme is to be linearly 
stable for that value of h. For the KdV equation the linearized stability condition 
reads [27]: fl k < 2h3. When h = 0.01, E = 0.000484 the maximum k allowed by 
the condition above is 0.000795, which is in good agreement with the values reported 
in Tables II and III. 

It should be emphasized that a choice of k above k,(h) in the CELF method does 
not result in an increase of the errors as the experiments in [27] showed. On the other 
hand, for the usual leapfrog scheme k > k,(h) leads to overflow at an early stage of 
the computation (linear instability) and even if k < k,(h) overflow may arise after 
some period of time (nonlinear blowup) [ 1,261. This will be illustrated in the next 
section. 

TABLE II 

Steps Time Average 

500 0.398387 0.000797 
1000 0.79609 1 0.000796 
1500 1.193826 0.000796 
2000 1.591293 0.000796 
2500 1.988377 0.000795 
3000 2.385329 0.000795 
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TABLE III 

k x lo4 

4. 
5. 
6. 
7. 
8. 
9. 

10. 

Average 
step X lo4 

4.002 
5.002 
6.003 
7.003 
1.963 
7.915 
7.930 

4. A NONLINEAR SCHR~DINGER EQUATION 

Our second test equation is the cubic Schriidinger equation 

iu,+u,,+Ju(*u=o; i* = -1. (4.1) 

For numerical work it is convenient to decompose the complex field u into its real 
and imaginary parts u and W, respectively, leading to the system 

u, + w,, + (u’ + w’)w = 0, 

wt - u.Lx - (u’ + w’)u = 0. 
(4.2) 

The nonlinear Schrodinger equation has been used to model a number of physical 
situations involving nonlinearity and dispersion; see [8, 13, 32, 381 and references 
therein. A survey of its mathematical theory is given by Strauss [2]. In 1970 
Zakharov and Shabat [38] succeeded in applying the inverse scattering method to the 
pure initial value for (4.1). This problem possesses an infinite number of conservation 
laws including 

1 22(x, t) dx (4.3) 

i (2 Id2 - lu14> cfx (4.4) 

and also has solitons, which are given by 

u(x, t) = 6 exp[i(fc[x - y] - [+c* - o] t)] sech(&(x - y - ct)). (4.5) 

Here y merely determines the initial position of the solition, while a and c control the 
amplitude and speed, respectively. 

Ablowitz and Ladik [2] developed a complicated discrete analog of (4.1) for which 

581/52/2-S 
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an inverse scattering theory applies. The interest of this finite-difference scheme 
appears to be mainly theoretical. Delfour et al. [S] have proposed a useful finite- 
difference scheme which conserves the discrete analog of both (4.3) and (4.4). 
Although they do not provide indications regarding the computational cost of their 
method it would not be unfair to assume that the solution of the nonlinear equations 
up to the level of round-off required to achieve conservation is expensive. Griffiths et 
al. [ 131 use a predictor-corrector pair which requires the solution of two linear 
systems per step and does not conserve either (4.3) or (4.4). (Note that (4.4) is not 
positive definite and therefore form the numerical point of view its conservation may 
be less valuable than that of (4.3).) A proof of the convergence of the cited schemes 
is given in [28]. 

A scheme will now be constructed which is both explicit and energy conserving. 
Equation (4.1) is supplemented by the boundary conditions 

24, = 0, x = a, x = b, t > 0. (4.6) 

Periodic or homogeneous Dirichlet conditions can also be considered. A grid xj = 
a+jh, j=O, l,..., J, h=(b-a)/J is introduced and v(xj, t), w(xj, t) are approx- 
imated by Vj(t), Wj(t), where 

(d/dt) vj(t) + (llh2)(Wj+*(l) - 2Wj(t) + Wj-l(t)) + Wj(t)(Vj(t)2 + Wj(t)2) = 0, 

(d/dt) Wj(l) - (1/h2)(Vj+ I(l) - 2vj(t) + vj-l(t)) - vj(t)(vj(t)2 + Wj(t)2) = 0, 
(4.7) 

j = 0, l,..., J. Here V-, = V,, W-, = W,, VJ+, = VJ-,, W,,, z WJp,. The set of 
equations (4.7) provides a system of ordinary differential equations for the vector 
y = [V,, w 0 ,***, VJ, &IT, which has 

+V;+fw;+ v-f+ w:+... +v:-,+ w;_,+;v:+{w:, (4.8) 

as a conserved quantity, and therefore use of the CELF method for the discritization 
in time leads to the scheme required. Note that other spatial discretizations can be 
used. For example, the experience gained by Grifflths et al. [ 131 may suggest 
Galerkin’s method based on piecewise-linear functions. 

The CELF method for (4.7) was implemented and found to perform satisfactorily. 
An example is provided in Fig. 3, which depicts the modulus of the computed 
complex solution in the interaction of two solitons. In this computation a = -20, 
b = 80, h = 0.25, k = 0.015, and 3000 time-step were taken. The speeds, amplitudes, 
and initial positions of the solitons are 2.0 and 0.02, 1.0 and 1.0, 0 and 20, respec- 
tively. Other numerical experiments will be reported later in the section. 

The behaviour of the time-step is found to be analogous to that of the K dV 
equation. For instance, the maximum allowable step when h = 0.25 and the usual 
leapfrog method is applied to the solution of system (4.7) &tout the nonlinear terms 
(i.e., linearization around the zero solution) is 0.25/z’ = 0.0156. This should be 
compared with Table IV which gives the average time-steps over 0 < t < 30 in the 
study of a single solition with the CELF scheme. 
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FIGURE 3 

In order to draw a comparison between the usual leapfrog, the normalized leapfrog 
(2.8), and the CELF techniques as used to discretize (4.7) the following experiments 
are made. The three methods are applied with h = 0.5, a = -30, b = 70 to the study 
of a single soliton with a = 0, c = 1 and initially placed at x = 0. The critical value of 
k is now 0.25 h2 = 0.0625. We first set k = 0.05 (subcritical). The performance of the 

TABLE IV 

k 

0.012 0.0118 
0.013 0.0128 
0.014 0.0137 
0.015 0.0147 
0.016 0.0156 
0.017 0.0156 
0.018 0.0156 

Average 
step 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 

methods is displayed in Fig. 4. The usual leapfrog scheme (i) exhibits a blowup 
phenomenon at t N 32. To avoid graphing meaningless large numbers U, Y were trun- 
cated by the plotting routine. The normalized method (ii) remains “stable” although 
the profile of the soliton is altered. The displacement of the wave is faithfully 
described by the CELF method (iii). Figure 5 shows the behaviour of the real and 
imaginary parts of the solution of this problem, as integrated by the CELF procedure. 

When k is increased to 0.08 (supercritical) (Fig. 6) the leapfrog scheme produces 
overflow at the first steps of the computation. The normalized leapfrog yields a wrong 
picture of the situation: the height of the wave is greatly reduced. Again the right 
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behaviour is given by the CELF procedure, which exhibits an average step of 0.0620, 
i.e., almost equal to the critical value. Note that both the CELF and the normalized 
leapflog methods conserve exactly (4.8). 

Finally it should be pointed out that the present CELF scheme for the nonlinear 
Schrodinger equation (4.1) was also considered by Mitchell and Morris [22]. 
However, they computed t, according to formula (2.9) rather than (2.2b), and found 
that in some cases the step-length was steadily and greatly reduced. There is little 
doubt that this anomalous behaviour was due to rounding errors via the mechanism 
discussed in Section 2. 

All the numerical computations in Sections 3 and 4 were carried out in single 
precission on the DEC 10 of the University of Dundee. 

5. CONCLUSIONS 

A method for the numerical solution of ordinary differential equations has been 
suggested that is explicit and second order. The method can conserve any quadratic 
quantity conserved by the continuous system and therefore may be useful for the 
integration in time of partial differential equations with quadratic constants of 
motion. Examples concerning the Korteweg-de Vries equation and the nonlinear 
Schriidinger equation show that the method improves on the leapfrog technique in 
two ways. It does not suffer from blowup phenomena and it can operate without 
difficulties at the maximum allowable time step associated with the linearized 
analysis of the usual leapflog method. 

A comparison with the a posteriori enforcement of conservation laws has also 
breen drawn, to the advantage of the suggested method. 

It is the authors’ feeling that at the moment the understanding of the nonlinear 
stability phenomena involved is limited and that further research on the subject 
should be pursued. 
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